Instituto Superior de Alta Formación y Especialización Empresarial
"CFAPE"
 
Email Clave  
Email    
Usuario actual Terminar Sesión
---
Envía tus ejercicios, tareas, examenes y proyectos para resolverlos.
 
 
   
CFAPE CARRERAS TÉCNICAS EXTENSIÓN SERVICIOS EGRESADOS CONTÁCTENOS
 

Sé testigo de la excelencia académica y tecnológica
Nuestro grupo de investigación te invita a visionar un impresionante video 3D, una muestra del ingenio de estudiantes y expertos. ¡Prepárate para ser cautivado!
 

AVISO A LA COMUNIDAD ESTUDIANTIL

Nuestro grupo de investigación de Computación Gráfica INVITA a la COMUNIDAD
para visualizar un impresionante escenario 3D desarrollado por
INVESTIGADORES y ESTUDIANTES.
 
 
Debes hacer CLIC en el botón de PLAY del video de YouTube para
CONTINUAR en el CAMPUS VIRTUAL.

 

¿Te gustó lo que viste? ¡Tu donación desde $1 USD es una gran motivación!
¡Si disfrutaste del video y encontraste valor o entretenimiento en nuestro contenido, considera hacer una pequeña donación para apoyar la continuidad de nuestro trabajo! 

Tu contribución es invaluable, y puedes ayudarnos a seguir creando contenido de alta calidad con una donación desde $1 USD.
Dona con Confianza: PayPal es Seguridad
¡Cada donación, grande o pequeña, marca una diferencia real!
 


CARRERA TÉCNICO SUPERIOR EN INGENIERÍA AMBIENTAL SEMESTRE V TURNO
ASIGNATURA MICROBIOLOGIA SECCIÓN
DOCENTE
    UNIDAD II:Nutrición y Metabolismo Microbiano

Comprende la acción de las enzimas en la cadena respiratoria, fermentativa y de los antimicrobianos.
CFAPE.COM
ANTIMICROBIANOS

  • Antimicrobiano: molécula natural (producida por un organismo vivo, hongo o bacteria), sintética o semisintética, capaz de inducir la muerte o la detención del crecimiento de bacterias, virus u hongos
  • Los antibióticos constituyen un grupo heterogéneo de sustancias con diferente comportamiento farmacocinético y farmacodinámico, ejercen una acción específica sobre alguna estructura o función del microorganismo, tienen elevada potencia biológica actuando a bajas concentraciones, y la toxicidad es selectiva con una mínima toxicidad para las células de nuestro organismo.
  • El objetivo de la antibioticoterapia es controlar y disminuir el número de microorganismos viables, colaborando con el sistema inmunológico en la eliminación de los mismos.
  • Existen distintos tipos de clasificaciones para agrupar a estas moléculas:

DE ACUERDO A LA INTERACCIÓN GERMEN-ANTIBIÓTICO 

Estos fármacos pueden dividirse en: 

  • bactericidas: su acción es letal, llevando a la lisis bacteriana;
  • bacteriostáticos: a las concentraciones que alcanzan en el suero o tejidos impiden el desarrollo y multiplicación bacteriana, pero sin llegar a destruirlas

SEGÚN EL ESPECTRO DE ACCIÓN: 

  • Antibióticos de espectro amplio, como aquellos antibióticos que son activos sobre un amplio número de especies y géneros diferentes (aminoglucósidos y carbapenemes)
  • Antibióticos de espectro reducido, antibióticos solo activos sobre un grupo reducido de especies (penicilinas). 

SEGÚN EL MECANISMO DE ACCIÓN:

  • Es el mecanismo por el cual un antibiótico es capaz de inhibir el crecimiento o destruir una célula bacteriana 
  • Se dividen en inhibidores de la formación de la pared bacteriana,
  • inhibidores de la síntesis proteica, 
  • inhibidores de la duplicación del DNA, 
  • inhibidores de la membrana citoplasmática
  • inhibidores de vías metabólicas.
  • Este es el esquema que se utilizará en este capítulo.

 

ANTIBIÓTICOS QUE ACTÚAN INHIBIENDO LA PARED BACTERIANA

     


BETALACTÁMICOS 

 

    Definición:

  • Los betalactámicos son un grupo de antibióticos de origen natural o semisintético, que se caracterizan por poseer en su estructura un anillo betalactámico. 
  • Actúan inhibiendo la última etapa de la síntesis de la pared celular bacteriana.
  • Constituyen la familia más numerosa de antimicrobianos y la más utilizada en la práctica clínica. Se trata de compuestos de acción bactericida lenta, relativamente independiente de la concentración plasmática, que presentan escasa toxicidad y poseen un amplio margen terapéutico. 

 


     


MECANISMO DE ACCIÓN DE BETALACTÁMICOS

 

  • Los antibióticos betalactámicos son agentes bactericidas que inhiben la síntesis de la pared celular bacteriana.
  • La destrucción de la pared celular bacteriana se produce como consecuencia de la inhibición de la última etapa de la síntesis del peptidoglicano.
  • El peptidoglicano está constituido por largas cadenas de glúcidos, formadas por la repetición de moléculas de ácido N-acetilmurámico y N-acetilglucosamina. El ácido murámico fija cadenas de tetrapéptidos que se unen entre sí para formar una malla, directamente (Gram negativos) o mediante un pentapéptido (Gram positivos).
  •  Los betalactámicos inhiben precisamente esta unión o transpeptidación, última etapa de la síntesis de la pared celular. De este modo, la pared queda debilitada y puede romperse por la presión osmótica intracelular. Para que actúen los betalactámicos es necesario que la bacteria se halle en fase de multiplicación, ya que es cuando se sintetiza la pared celular. 

 


     


FARMACOCINÉTICA

 

  • Los betalactámicos son antibióticos de actividad bactericida lenta, relativamente independiente de la concentración plasmática alcanzada, siempre que esta exceda la CIM del agente causal.
  •  La actividad bactericida y probablemente la eficacia clínica, se relacionan mejor con el tiempo durante el cual dicha concentración excede la CIM (T por encima de CIM).
  • En este sentido, se ha reportado evidencia en favor de la administración de betalactámicos por infusión continua en caso de infecciones graves.
  • El efecto postantibiótico (EPA) consiste en la acción residual del antibiótico sobre la bacteria, después de descender las concentraciones terapéuticas en la sangre y los tejidos por debajo de la CIM. En el caso de los antibióticos betalactámicos, el EPA es de corta duración, con la excepción de los carbapenemes, que presentan un EPA apreciable, tanto sobre Gram positivos como sobre Gram negativos.

 

EFECTOS ADVERSOS DE BETALACTÁMICOS

 

  • Poseen una cierta acción irritativa directa a nivel local, dependiendo de la vía de administración sobre el aparato digestivo, músculo o vena, pudiendo causar flebitis o miositis.
  •  Además su estructura favorece la aparición de manifestaciones de hipersensibilidad: exantemas, edemas, hemólisis y con muy baja frecuencia pueden producir shock anafiláctico.
  • Pueden causar acciones adversas por disbacteriosis, con colonización y superinfección por bacterias endógenas resistentes u hongos. Las disbacteriosis están en relación directa con la amplitud del espectro antibiótico, con la dosis y con la concentración del antibiótico en las mucosas y la piel, colonizadas por flora normal. Por ejemplo, está muy bien estudiado que el uso de cefalosporinas de tercera generación favorece la colonización intestinal por Enterococcus y enterobacterias multirresistentes. Pueden aparecer convulsiones y crisis mioclónicas si se utilizan dosis elevadas, sobre todo en pacientes con alteración de la función renal. En este sentido, el imipenem posee una mayor capacidad irritativa sobre el sistema nervioso central que el resto de los betalactámicos.

 

INDICACIONES CLÍNICAS DE BETALACTÁMICOS

 

  • Nos centraremos en las indicaciones de este tipo de antibióticos en infecciones comunitarias. Infección de piel y partes blandas. La penicilina V y amoxicilina pueden ser una opción para las infecciones producidas por S. pyogenes (celulitis, erisipela, impétigo).
  •  En infecciones invasivas debe utilizarse penicilina G, y en presencia de un síndrome de sepsis o shock tóxico debe añadirse clindamicina por el mecanismo de acción que tiene esta droga frente a poblaciones no replicativas, inhibiendo además la síntesis proteica y por lo tanto la síntesis de toxinas.
  • En el caso de las celulitis estafilocócicas pueden tratarse con una cefalosporina de primera generación o una penicilina antiestafilocócica
  • Infecciones de las vías respiratorias.
  •  La penicilina G o la amoxicilina por vía oral son los antibióticos de elección para el tratamiento de la neumonía neumocócica
  •  La penicilina es el antibiótico de elección en la endocarditis causada por Streptococcus viridans.
  • En la actualidad, la ceftriaxona y el cefotaxime son los antibióticos de elección en el tratamiento de la mayoría de pacientes con meningitis bacteriana de origen comunitario.
  • Infección intraabdominal. El cefotaxime es una buena opción para el tratamiento de la peritonitis bacteriana espontánea, que suele presentarse en pacientes cirróticos con ascitis.
  • Infección urinaria.
  • Ampicilina-sulbactam es una buena opción para el tratamiento de infecciones urinarias bajas no complicadas; los betalactámicos son los fármacos de primera línea para pacientes embarazadas.
  • También se puede usar cefalosporinas de segunda y tercera generación para el tratamiento empírico de los casos de pielonefritis.
  •  Infecciones osteoarticulares
  •  Así, la oxacilina o las cefalosporinas de primera generación eran el tratamiento de elección en la osteomielitis estafilocócica.

 Se pueden clasificar en cuatro grupos diferentes: penicilinas, cefalosporinas, monobactámicos y carbapenemes.

 

PENICILINAS

 

  • Son un grupo de antibióticos de origen natural y semisintético que contienen el núcleo de ácido 6-aminopenicilánico, que consiste en un anillo betalactámico unido a un anillo tiazolidínico. Los compuestos de origen natural son producidos por diferentes especies del hongo Penicillium spp. Las penicilinas difieren unas de otras por sustituciones en la posición 6 del anillo, donde cambios en la cadena lateral pueden inducir modificaciones en la actividad antibacteriana y en las propiedades farmacocinéticas.
  •  De acuerdo a su origen y espectro de acción pueden clasificarse en penicilinas naturales (G y V), penicilinas resistentes a las penicilinasas estafilocócicas (oxacilina, meticilina, dicloxacilina), aminopenicilinas (ampicilina, amoxicilina), carboxipenicilinas (carbenicilina, ticarcilina), ureidopenicilinas (piperacilina). El espectro antimicrobiano de la penicilina G abarca cocos Gram positivos, cocos Gramm negativos (Neisseria meningitidis) y bacilos Gram positivos, tanto facultativos como anaerobios, así como espiroquetas y algunos bacilos Gram negativos anaerobios.

 

CEFALOSPORINAS

 

  • Son productos de origen natural derivados de productos de la fermentación del hongo Cephalosporium acremonium.
  • Se definen cuatro generaciones de cefalosporinas.
  •  Las cefalosporinas de primera generación son muy activas frente a los cocos Gram positivos;

 

MONOBACTÁMICOS

 

  •  Aztreonam, el único monoatómico disponible para uso clínico, posee una excelente actividad sobre bacterias Gram negativas aerobias y facultativas. Por el contrario, carece de actividad frente a Gram positivos y bacterias anaerobias.

 

CARBAPENEMES

 

  • Son una clase única de betalactámicos que presentan el mayor espectro de actividad conocido dentro de este grupo de antibióticos.
  •  Imipenem es el primer carbapenem desarrollado para uso clínico.
  •  Es un derivado semisintético producido por Streptomyces spp.
  •  Otros compuestos más nuevos son meropenem y ertapenem.
  •  Su actividad bactericida se extiende a cocos Gram positivos incluyendo Staphylococcus spp. sensibles a meticilina, Streptococcus pneumoniae y otros estreptococos.
  • Solo carecen de actividad frente a los estafilococos resistentes a meticilina, enterococos resistentes a betalactámicos, algunas especies de Pseudomonas y Stenotrophomonas maltophilia.

 

GLICOPÉPTIDOS

 

  • Se trata de antibióticos que actúan sobre la pared bacteriana.  Actualmente hay dos drogas en uso clínico: vancomicina y teicoplanina.  La vancomicina es un antibiótico bactericida de espectro reducido (solo actúa sobre bacterias Gram positivas), que se obtiene de Streptomyces orientalis.

 

MECANISMO DE ACCIÓN

 

  • Los glicopéptidos inhiben la última etapa de síntesis y ensamblado del peptidoglicano de la pared celular, mediante la formación de un complejo con la porción D-alanina-Dalanina del pentapéptido precursor (ver capítulo Mecanismos de Resistencia). Además daña los protoplastos alterando la permeabilidad de la membrana citoplasmática, y altera la síntesis de RNA. Sus múltiples mecanismos de acción contribuyen a la baja frecuencia de desarrollo de resistencia. Se une rápida y firmemente a las bacterias y ejerce su efecto bactericida sin un período de inducción, pero solo sobre microorganismos en multiplicación activa.

 

EFECTOS COLATERALES

 

  • La infusión rápida de vancomicina puede dar lugar a una reacción caracterizada por eritema y prurito en cuello y parte alta del tronco. Esto puede evitarse administrando la droga por perfusión lenta. La aparición de flebitis es frecuente cuando se administra por vía periférica. La nefrotoxidad de la vancomicina ha disminuido debido al uso de preparados más purificados y a la monitorización del tratamiento. La vancomicina puede producir trombopenia o neutropenia que desaparece al suspender el tratamiento. La teicoplanina tiene efectos colaterales similares a la vancomicina pero de frecuencia mucho menor

 

ANTIBIOTICOS QUE ACTUAN INHIBIENDO LA SISNTESIS PROTEICA

 

AMINOGLUCÓSIDOS

 

  • Se caracterizan por la presencia de dos o más aminoazúcares unidos por enlaces glucosídicos a un anillo aminociclitol. En nuestro país los aminoglucósidos disponibles son: gentamicina, amikacina y estreptomicina para uso parenteral. La tobramicina se encuentra disponible en presentación tópica para uso oftalmológico. La espectinomicina no tiene aminoazúcares, y a pesar de ser considerada muchas veces en el grupo, no es un verdadero aminoglucósido. Son altamente polares, policationes solubles en agua y generalmente estables al calor y cambios de pH entre 5 y 8.

 

MECANISMO DE ACCIÓN

 

Los aminoglucósidos se unen de forma irreversible a la subunidad 30S del ribosoma, interfiriendo con la lectura correcta del código genético con el consiguiente bloqueo de la síntesis proteica de la bacteria.

 

FARMACOCINETICA

 

  • Los aminoglucósidos presentan una escasa absorción oral y necesitan administrarse por vía parenteral. En general, se administran por vía intravenosa en perfusión durante 30 minutos. Cuando se emplea la vía intramuscular, la concentración plasmática máxima tarda más tiempo en alcanzarse y depende de la zona de inyección.
  •  La vida media es de aproximadamente dos horas, pero puede sobrepasar las 24 horas en caso de alteración de la función renal. Debido a su estructura polar, los aminoglucósidos penetran en pequeña cantidad en el interior de las células, excepto en las del túbulo proximal renal, donde estos antibióticos alcanzan una concentración superior a la plasmática.

 

EFECTOS ADVERSOS

 

  • Los aminoglucósidos pueden causar nefrotoxicidad, ototoxicidad y bloqueo neuromuscular, y en menor medida exantemas cutáneos
  •  fiebre por antibióticos
  •  depresión medular
  •  anemia hemolítica y antagonismo del factor V de la coagulación.
  • La ototoxicidad
  • El bloqueo neuromuscular cursa con parálisis flácida, debilidad de la musculatura respiratoria y midriasis. Es una complicación rara, pero supone un riesgo

 

MACROLIDOS

 

Los macrólidos (eritromicina, claritromicina, azitromicina son antibióticos semisintéticos, derivados de la eritromicina producida por Streptomyces eritreus. Éstos se clasifican de acuerdo al número de carbonos: 14 carbonos (eritromicina y claritromicina), 15 carbonos (azitromicina) y 16 carbonos (espiramicina).

 

 MECANISMO DE ACCIÓN

 

 Se unen a la subunidad 50S del RNA ribosómico (rRNA) en forma reversible. La unión se realiza mediante la formación de puentes de hidrógeno entre diferentes radicales hidroxilo del macrólido y determinadas bases del rRNA. Esto provoca un bloqueo en las reacciones de transpeptidación y traslocación del ribosoma bacteriano.

 

FARMACOCINÉTICA Y FARMACODINAMIA

 

La absorción intestinal de eritromicina y azitromicina se ve disminuida en presencia de comida, por lo que su administración debe ser alejada de las mismas. Con excepción de azitromicina, todos se metabolizan en el hígado y sufren un efecto de primer paso que puede disminuir de manera significativa su biodisponibilidad.

 Los macrólidos con anillo de 14 átomos, pero no los de 15 y 16 átomos, emplean la vía metabólica del sistema enzimático del citocromo P450, cuya actividad inhiben en mayor o menor grado.

  • En general pasan a la saliva, a las secreciones bronquiales y a la leche materna, donde alcanzan concentraciones superiores al 50% de la sérica, pero no difunden a los tejidos fetales.
  •  La concentración biliar es superior a la sérica. Se eliminan por vía biliar en forma de metabolitos y de producto activo. Al no ser eliminados por vía renal no son adecuados para infecciones urinarias.

 

EFECTOS ADVERSOS

 

  • Son las molestias gastrointestinales (dolor abdominal, náuseas y vómitos)
  • La administración de eritromicina a recién nacidos puede producir estenosis hipertrófica del píloro (revierte al retirar la medicación)
  •  Se han descrito casos de pancreatitis con el empleo de eritromicina y se ha sugerido una posible relación con la producción de un espasmo del esfínter de Oddi.
  • Eritromicina por vía intravenosa puede producir flebitis
  • Una complicación rara del uso de eritromicina es la hepatotoxicidad.
  • Se ha observado ototoxicidad en forma de sordera y acufenos con el empleo de dosis altas de eritromicina, especialmente en la población anciana o con insuficiencia renal o hepática, o con la administración concomitante de otros fármacos potencialmente ototóxicos

 

LINCOSAMIDAS

 

  • La clindamicina pertenece junto a la lincomicina, al grupo de las lincosaminas. La primera es un derivado sintético de la segunda, con mayor actividad, absorción gastrointestinal y espectro, por lo que tiene mayor uso en la práctica clínica.

 

MECANISMO DE ACCIÓN

 

  • Actúa inhibiendo la síntesis proteica bacteriana al unirse a la subunidad 50S, impidiendo la iniciación de la cadena peptídica.

 

FARMACOCINÉTICA Y FARMACODINAMIA

 

  •  La clindamicina se absorbe un 90% por vía digestiva. Su volumen de distribución es amplio, alcanzando concentraciones clínicamente útiles en muchos tejidos y fluidos corporales, como hueso, líquido sinovial, pleura y peritoneo. Atraviesa con facilidad la barrera placentaria, pero no atraviesa la barrera hematoencefálica, aun con las meninges inflamadas. Es metabolizada en el hígado, y sus metabolitos se eliminan por vía biliar y en menor grado por vía renal

 

EFECTOS ADVERSOS

 

  • Las más comunes son diarrea y manifestaciones de hipersensibilidad.
  •  Su principal efecto adverso es la colitis seudomembranosa que puede ser mortal. Otros efectos secundarios son anorexia, vómitos, flatulencia, distensión abdominal y en raras ocasiones aumento del nivel de transaminasas. No se recomienda su uso en la embarazada.

 

ESTREPTOGRAMINAS

 

  • Es un grupo de antibióticos formados por dos componentes: estreptogramina A y estreptogramina B. Un antibiótico a destacar de éste grupo es el Quinupristin-dalfopristin (Q-D). Quinupristin es el componente estreptogramina B y dalfopristin es el componente A.

 

MECANISMO DE ACCIÓN

 

  •  Ejercen su actividad a nivel del ribosoma bacteriano, donde el componente A se une al peptidil tRNA y bloquea la unión de nuevos aminoácidos, y el componente B impide la elongación de la cadena peptídica. El componente A aumenta la afinidad del componente B por la subunidad 50S ribosomal, siendo la combinación de A+B bactericida.

 

FARMACOCINÉTICA Y FARMACODINAMIA

 

  • una vida media muy corta (menos de 1 hora),  La metabolización ocurre a nivel hepático, con la producción de metabolitos con actividad antimicrobiana, La eliminación es por las heces, y solo parcialmente en orina.
  • Se concentra bien en hígado y riñones.
  • A nivel hepático, inhibe el sistema enzimático de la citocromo P–450, incrementando de este modo el nivel sanguíneo de otras drogas que son metabolizadas por este sistema.

 

EFECTOS ADVERSOS

 

  • Para evitar la irritación en el sitio de inyección (que ocurre en un 30% de los casos) debe administrarse diluido en suero glucosado al 5% y en infusión lenta. La administración de Q-D puede producir artromialgias. Otros efectos secundarios son nauseas, vómito, diarrea, erupción cutánea, prurito, cefalea y astenia.

 

OXAZOLIDINONAS

 

  • Es una clase de antibióticos enteramente sintéticos, en la cual el linezolid es el único disponible para uso clínico en humanos.

 

MECANISMO DE ACCIÓN

 

  • Linezolid es un antibiótico bacteriostático. Inhibe los primeros pasos de la síntesis proteica mediante la unión a la subunidad ribosomal 50S en la zona de contacto con la subunidad 30S, impidiendo de este modo la formación del complejo de iniciación 70S.

 

FARMACOCINÉTICA Y FARMACODINAMIA

 

La forma de administración puede ser oral o intravenosa. Presenta una rápida absorción, con una biodisponibilidad cercana al 100%. El linezolid se metaboliza por oxidación a nivel hepático sin interaccionar con la enzima citocromo P450. La unión a proteínas es del 31%. Presenta eliminación por vía urinaria (85%) y fecal (25%).

 

EFECTOS ADVERSOS

 

 Los efectos adversos más frecuentes son a nivel digestivo causando diarrea, náuseas y vómitos. A nivel hematológico pueden producir mielosupresión, lo que se observa en tratamientos mayores a dos semanas, siendo reversible con la supresión de la administración del fármaco.

 

ANTIBIÓTICOS QUE INHIBEN LA REPLICACIÓN DEL DNA

 

QUINIOLONAS

 

  • Las quinolonas son antibióticos bactericidas y actúan inhibiendo las topoisomerasas, enzimas que catalizan el superenrollamiento del DNA cromosómico y que aseguran una adecuada división celular.

 

MECANISMO DE ACCIÓN

 

  •  Las quinolonas interactúan con dos sitios diferentes pero relacionados dentro de la célula bacteriana: la DNA girasa y la topoisomerasa IV. La primera es más sensible a la acción de las quinolonas en caso de gérmenes Gram negativos, mientras que en Gram positivos la más sensible es la topoisomerasa IV. Estos antibióticos se unen al complejo girasaDNA, una vez que la girasa ya ha cortado al DNA para introducir, un supergiro negativo. El resultado neto es la pérdida del superenrollamiento negativo (forma fundamental de empaquetamiento del DNA bacteriano) lo que ocasiona lisis celular. Las quinolonas inhiben la síntesis de DNA y a concentraciones altas también la de RNA

 

FARMACOCINÉTICA Y FARMACODINAMIA

 

  •  Las quinolonas son bien absorbidas luego de la administración por vía oral, mostrando una biodisponibilidad muy buena. Las concentraciones séricas alcanzadas con la administración vía oral son similares a las alcanzadas por vía intravenosa. La comida no afecta la absorción. Sin embargo, pueden interaccionar con cationes (calcio, aluminio, magnesio, etc.), lo que disminuye significativamente la absorción. La unión a proteínas plasmáticas es baja y la vida media plasmática varía de 1,5 a 16 horas. La ciprofloxacina y quinolonas de tercera y cuarta generaciones se distribuyen ampliamente por el organismo, siendo el volumen de distribución alto, lo que implica que alcanzan concentraciones intracelulares altas. La eliminación es mayoritariamente renal para el ácido pipemídico y levofloxacina, otras tienen eliminación no renal (moxifloxacina) y otras presentan eliminación por ambas vías (ciprofloxacina y norfloxacina).

 

 EFECTOS ADVERSOS

 

  • náuseas, anorexia, vómitos y dolor abdominal. cefaleas, insomnio y alteraciones del humor. Artropatía y erosiones de los cartílagos en animales jóvenes han determinado su uso restringido en niños.. No ha sido establecido el uso seguro de las quinolonas durante el embarazo y no deben ser utilizadas durante la lactancia.

 

ANTIBIÓTICOS QUE ACTÚAN INHIBIENDO LA SÍNTESIS DE ÁCIDO FÓLICO

 

SULFONAMIDAS

 

  • Las sulfonamidas fueron las primeras drogas eficaces empleadas para el tratamiento sistémico de infecciones bacterianas. Debido a la aparición de resistencia bacteriana y al descubrimiento de fármacos más activos y menos tóxicos, su uso se limitó durante un tiempo. Sin embargo actualmente, con la recuperación de la sensibilidad de algunas bacterias y la aparición de la combinación de trimetoprim y sulfonamidas que actúan de manera sinérgica, estos antibióticos han vuelto a ser usados.

 

MECANISMO DE ACCIÓN

 

 Son antibióticos bacteriostáticos que actúan alterando la síntesis del ácido fólico, lo cual repercute sobre la síntesis nucleotídica, con la consiguiente inhibición del crecimiento bacteriano​FARMACOCINÉTICA Y

 

FARMACODINAMIA

 

  • Se administran habitualmente por vía oral. Tienen una buena y rápida absorción gastrointestinal (70-100%), excepto las sulfas de acción tópica, apareciendo en orina a los 30 minutos. Tienen una buena distribución en la mayoría de los tejidos con penetración en líquido cefalorraquídeo, líquido sinovial, pleural, y peritoneal, con concentraciones el 80% con respecto al plasma. Atraviesan la placenta y llegan a la circulación fetal, pudiendo producir efectos tóxicos en el feto. Presentan metabolización hepática por acetilación y glucuronidación. Su excreción es renal, ya sea como fármaco intacto o como producto metabólico.

 

EFECTOS ADVERSOS

 

  • pueden producir cristaluria y depósitos tubulares de cristales de sulfonamidaPueden producir necrosis tubular y nefritis intersticial. pueden producir anemia hemolítica aguda; y menos frecuentemente leucopenia, trombocitopenia o anemia aplásica. La administración de sulfas a neonatos o a embarazadas en el último mes, puede provocar aumento de la bilirrubina no conjugada en el recién nacido, o en el feto puede depositarse en los núcleos grises cerebrales provocando ictericia nuclear o kernicterus, una encefalopatía tóxica.

 

TRIMETOPRIM-SULFAMETOXAZOL TRIMETOPRIM

 

  •  es una 2,4-diamino-5-(3’,4’,5’-trimetoxibenzil) pirimidina. A pesar de tener actividad antimicrobiana propia, esta droga fue sintetizada como un inhibidor de la enzima dihidrofolato reductasa (DHFR) con la finalidad de potenciar la actividad de las sulfonamidas. La DHFR bacteriana actúa en un paso posterior a la de la dihidropteroato sintasa (blanco de unión de las sulfonamidas) en la síntesis del ácido fólico. El bloqueo secuencial a nivel de la vía de síntesis del ácido fólico explica la sinergia entre el trimetoprim y las sulfas. La combinación mas utilizada es la de trimetoprimsulfametoxazol (TMP-SMX)

 

FARMACOCINÉTICA Y FARMACODINAMIA El TMP-SMX

 

  • Se absorbe de forma rápida y completa (95%) a nivel del tracto gastrointestinal (el TMP en 2 horas y el SMX en 4 horas). El TMP al ser más lipofílico que el SMX. Ambos compuestos se distribuyen ampliamente en diferentes tejidos y secreciones. También atraviesan la placenta y se excretan por la leche materna. Estos compuestos se eliminan como metabolitos inactivos o sin modificación en un 80% por vía renal y 20% por vía hepática. Se necesita ajustar la dosis si está comprometida la función renal.

 

EFECTOS ADVERSOS

 

  •  Gastrointestinales. Puede producir anorexia, náuseas, vómitos y diarrea en un 10% de los pacientes. Reacciones de Hipersensibilidad. Principalmente en la forma de rash o fiebre; ocurre en el 3 al 5% de los pacientes. Las reacciones de hipersensibilidad son más frecuentes en los pacientes con Virus de la Inmunodeficiencia Humana (V.I.H.). Otros. Hipercalemia, meningitis aséptica y meningoencefalitis, eritema multiforme, síndrome de Steven Johnson, anemia aplásica, agranulocitosis, trombocitopenia, hemólisis, necrosis hepática fulminante, hepatitis y nefritis intersticial.

 

OTROS ANTIBIÓTICOS

 

RIFAMPICINA

 

  • Es un antibiótico semisintético, el cual inhibe la enzima RNA polimerasa DNA dependiente bacteriana, sin tener ningún efecto sobre su enzima homóloga humana. Es un agente bactericida, y su alta liposolubilidad favorece la penetración en el fagosoma. La resistencia antimicrobiana emerge rápidamente si se realizan tratamientos con este antibiótico como monodroga. Se utiliza en nuestro país como fármaco de primera línea para el tratamiento de la tuberculosis asociada a otros antibióticos, y como profilaxis en la meningitis producida por N. meningitidis.

 

NITROFURANTOÍNA

 

  •  Pertenece al grupo sintético de nitrofuranos, junto a furazolidona y nitrofurazona. Su acción bactericida se debe a la capacidad de unión a proteínas ribosomales, daño cromosómico e inhibición de la respiración y metabolismo del piruvato. Su actividad en muchos casos parece necesitar la reducción enzimática dentro de la célula bacteriana. Es una buena opción para el tratamiento de las infecciones urinarias bajas no complicadas.

 

CLORANFENICOL

 

  •  Es una agente de actividad bactericida, sobre microorganismos agentes de meningitis, tales como N. meningitidis, H. influenzae y S. pneumoniae, y bacteriostática frente a otros gérmenes. Su penetración en la célula requiere un proceso energía-dependiente, y una vez dentro inhibe la síntesis proteica por unión a la subunidad ribosomal 50S. Tetraciclina Las tetraciclinas son un grupo de agentes bactericidas activos sobre microorganismos Gram positivos y negativos, y patógenos intracelulares como clamidias, micoplasmas y rickettsias. Su mecanismo de acción se debe a la inhibición de la síntesis proteica por unión a la subunidad ribosomal 30S.

 


Sé testigo de la excelencia académica y tecnológica
Nuestro grupo de investigación te invita a visionar un impresionante video 3D, una muestra del ingenio de estudiantes y expertos. ¡Prepárate para ser cautivado!

¿Te gustó lo que viste? ¡Tu donación desde $1 USD es una gran motivación!
¡Si disfrutaste del video y encontraste valor o entretenimiento en nuestro contenido, considera hacer una pequeña donación para apoyar la continuidad de nuestro trabajo! 

Tu contribución es invaluable, y puedes ayudarnos a seguir creando contenido de alta calidad con una donación desde $1 USD.
Dona con Confianza: PayPal es Seguridad
¡Cada donación, grande o pequeña, marca una diferencia real!
 


    UNIDADES
UNIDAD UNIDAD DE PUBLICACION ITEMS DE PUBLICACION
UNIDAD I Evolución de la microbiología .Estructura bacteriana .Genetica microbiana 
ITEM ITEM NOMBRE PUBLICACION TITULO - PAGINA WEB PUBLICACION SUBTITULO - PAGINA WEB
A Explica la importancia de la microbiología
(CLIC PARA VER CONTENIDO) Explica la importancia de la microbiología
B Describe la morfología y estructura de las bacterias
(CLIC PARA VER CONTENIDO) Describe la morfología y estructura de las bacterias
C Conoce la aplicación de las coloraciones bacterianas y métodos de esterilización.
(CLIC PARA VER CONTENIDO) Conoce la aplicación de las coloraciones bacterianas y métodos de esterilización.
D Comprende la genética microbiana
(CLIC PARA VER CONTENIDO) Comprende la genética microbiana
UNIDAD II Nutrición y Metabolismo Microbiano 
ITEM ITEM NOMBRE PUBLICACION TITULO - PAGINA WEB PUBLICACION SUBTITULO - PAGINA WEB
A Evalúa los nutrientes necesarios para que el microorganismo pueda desarrollar y reproducirse
(CLIC PARA VER CONTENIDO) Evalúa los nutrientes necesarios para que el microorganismo pueda desarrollar y reproducirse
B Comprende y conoce el crecimiento microbiano
(CLIC PARA VER CONTENIDO) Comprende y conoce el crecimiento microbiano
C Determina las necesidades metabólicas para diferenciar los microorganismos
(CLIC PARA VER CONTENIDO) Determina las necesidades metabólicas para diferenciar los microorganismos
D Comprende la acción de las enzimas en la cadena respiratoria, fermentativa y de los antimicrobianos.
(CLIC PARA VER CONTENIDO) Comprende la acción de las enzimas en la cadena respiratoria, fermentativa y de los antimicrobianos.
UNIDAD III Bacteriología 
ITEM ITEM NOMBRE PUBLICACION TITULO - PAGINA WEB PUBLICACION SUBTITULO - PAGINA WEB
A Describe las características, patogenicidad, vías de transmisión y prevención. Staphylococcus y Streptococcus.
(CLIC PARA VER CONTENIDO) Describe las características, patogenicidad, vías de transmisión y prevención. Staphylococcus y Streptococcus.
B Describe las características, patogenicidad, vías de transmisión y prevención. Enterobacterias, Clostridium y Bacillus.
(CLIC PARA VER CONTENIDO) Describe las características, patogenicidad, vías de transmisión y prevención. Enterobacterias, Clostridium y Bacillus.
C Describe las características, patogenicidad, vías de transmisión y prevención. Vibrio, Brucella, Pseudomona y Listeria.
(CLIC PARA VER CONTENIDO) Describe las características, patogenicidad, vías de transmisión y prevención. Vibrio, Brucella, Pseudomona y Listeria.
D Describe las características, patogenicidad, vías de transmisión y prevención. Campylobacter, Yersinia y Helicobacter pylori.
(CLIC PARA VER CONTENIDO) Campylobacter, Yersinia y Helicobacter pylori.
UNIDAD IV Mohos y levaduras. Virus 
ITEM ITEM NOMBRE PUBLICACION TITULO - PAGINA WEB PUBLICACION SUBTITULO - PAGINA WEB
A Describe las características, estructuras y reproducción de los hongos
(CLIC PARA VER CONTENIDO) Describe las características, estructuras y reproducción de los hongos
B Describe las características diferenciales de los géneros de levaduras
(CLIC PARA VER CONTENIDO) Describe las características diferenciales de los géneros de levaduras
C Describe las características, diferenciales de los géneros de mohos.
(CLIC PARA VER CONTENIDO) Describe las características, diferenciales de los géneros de mohos.
D Comprende las características generales y peligrosidad de los virus.
(CLIC PARA VER CONTENIDO) Comprende las características generales y peligrosidad de los virus.


    BIBLIOGRAFIA

I Unidad Didáctica

  • DIAZ, R y Colab. 2003. Manual Práctico de Microbiología, 2da Edic.; Edit.; Masson.
  • GRANADOS,P. RAQUEL Y VILLAVERDE, P. CARNEN. 2003. Microbiología, tomo I 1era Edic.; Edit.; Thoson
  • KONEMAN W. Allen 2006 Diagnostico microbiológico. 6ta. Ed. Editorial medica panamericana S.A.
  • http://www.icmsf.iit.edu/
  • http://www.fda.gov/
  • http://www.aoac.org/

II Unidad Didáctica

  • ALBERT, C. ESCOLA, M. 2002. Método de análisis microbiológico. Madrid. Ediciones Diaz de Santos S.A.
  • GAMAZO, C. y Colb. 2005. Manual Práctico de Microbiología. 3era edic.; Edit.; Massot.
  • GRANADOS, P. RAQUEL Y VILLAVERDE, P. CARMEN. 2007. icrobiología, tomo II, 2da Edic.; Edit.; Thoson.
  • http://www. Infocame.com /
  • http://www. minsa.gob.pe /
  • http://www. conam.gob.pe /

III Unidad Didáctica

  • GARCIA, de microbiologia médica. Mexico
  • LEVINSON, w. 2004. Microbiología e inmunología médica, 8 edic.; Edit.; Interamericana.
  • LEVEAU, J, y BOUIX, M, 2000. Microbiología, 1era Edic. ; Edit. ; Acribía. 
  • http://vm.cfsan.fda.gov/~ebam/bam-toc.html
  • http://www.codexalimentarius.net/web/index_es
  •  http://www.apha.org

IV Unidad Didáctica

  • MURRAY, R. P. Y Colb. 2007. Microbiología. 5ta Edic.; Edit.; Elsevier - España.
  • JAWETZ, M Y ADELBERG. 2001, Microbiología médica de Jawetz, 17 ava edic.; Edit.; Manual Moderno.
  • STUART, W. T. 2001, Microbiología. 1edic.; Edit.; Interamericana.
  • http://www..fao.org/
  • http://www.Infoagro.com /
  • http://www..diba.es/ 
    UNIDAD II:Nutrición y Metabolismo Microbiano


Explica la importancia de la microbiología
CFAPE.COM
Describe la morfología y estructura de las bacterias
CFAPE.COM

Conoce la aplicación de las coloraciones bacterianas y métodos de esterilización.
CFAPE.COM


Comprende la genética microbiana
CFAPE.COM
Evalúa los nutrientes necesarios para que el microorganismo pueda desarrollar y reproducirse
CFAPE.COM


Comprende y conoce el crecimiento microbiano
CFAPE.COM
Determina las necesidades metabólicas para diferenciar los microorganismos
CFAPE.COM




Comprende la acción de las enzimas en la cadena respiratoria, fermentativa y de los antimicrobianos.
CFAPE.COM



    UNIDAD II:Nutrición y Metabolismo Microbiano


Describe las características, patogenicidad, vías de transmisión y prevención. Staphylococcus y Streptococcus.
CFAPE.COM
Describe las características, patogenicidad, vías de transmisión y prevención. Enterobacterias, Clostridium y Bacillus.
CFAPE.COM

Describe las características, patogenicidad, vías de transmisión y prevención. Vibrio, Brucella, Pseudomona y Listeria.
CFAPE.COM


Campylobacter, Yersinia y Helicobacter pylori.
CFAPE.COM
Describe las características, estructuras y reproducción de los hongos
CFAPE.COM


Describe las características diferenciales de los géneros de levaduras
CFAPE.COM
Describe las características, diferenciales de los géneros de mohos.
CFAPE.COM




Comprende las características generales y peligrosidad de los virus.
CFAPE.COM




Sé testigo de la excelencia académica y tecnológica
Nuestro grupo de investigación te invita a visionar un impresionante video 3D, una muestra del ingenio de estudiantes y expertos. ¡Prepárate para ser cautivado!

¿Te gustó lo que viste? ¡Tu donación desde $1 USD es una gran motivación!
¡Si disfrutaste del video y encontraste valor o entretenimiento en nuestro contenido, considera hacer una pequeña donación para apoyar la continuidad de nuestro trabajo! 

Tu contribución es invaluable, y puedes ayudarnos a seguir creando contenido de alta calidad con una donación desde $1 USD.
Dona con Confianza: PayPal es Seguridad
¡Cada donación, grande o pequeña, marca una diferencia real!
 


 
 
 
             
Quienes somos       Contacto       Aviso legal       Potica de privacidad
             
 
© Todos los Derechos Reservados 2010 por CFAPE.COM - EDUCACIÓN SUPERIOR A DISTANCIA  
Escribe tus preguntas, sugerencias, observaciones y comentarios a:
Email: cfape@cfape.com
Email: cfape10@gmail.com  
 
 
 
?>